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ABSTRACT 

Zabrodsky asked when is the iterated commutator map X ~ - - X  for a con- 
netted associative H-space X a null map. In this paper we reduce this question 
to a cohomological question and answer it in several cases. 

Introduction 

Let Xbe a finite connected, associative H-space. The functor [ , X ]  takes its 
values in the category of  groups. In fact, 

PROPOSITION 1.1. The functor [ , X] takes its values in pro-nilpotent groups. 

PROOf. If  Y is finite dimensional of dimension d, then any (d + D-fold 
commutator  of maps Y ~ X is zero since it factors through X td+ m) which is 
d- connected. 

Any Y can be expressed as 

Y = l i~  Y" 

with Y" finite. In the exact sequence 

li._m'[ZY ~, X]---[Y, X]--, li _m[ YL X] 

the quotient group is visibly pro-nilpotent. It suffices to show that for some n, 
the intersection 

F,  N li __mI[ZYL X] 
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is zero. Now the subgroup lim'[£YL X] consists of phantom maps, so the 

result follows from: 

PROPOSITION 1.2. Let 

f~ :Y , - - .X ,  i--- 1, . . . .  d 

be maps from d spaces to a d-dimensional finite H-space. I f  the left normalized 

commutator 

is a phantom map, it is null. 

f =  [ fb...,fd I 

L~.MMA 1.3. Let  T: Spaces ~ Spaces be a functor preserving directed co- 

limits (up to homotopy), and sending nullhomotopic maps to nullhomotopic 

maps. I f  f :  X-- ,  Y is a phantom map, then so is T f  : TX-- ,  TY .  

PROOF. Phantom maps are the directed colimits of null maps. Writing 
f =  lirq f~, with f~ null, gives a presentation 

T f  = lin  T f  

with T f  ~ null. This completes the proof. 

The group [ Yt X • • • X Y~, X] is naturally isomorphic to 

[Y, A . . -  A Yn, X] × [T~(Y,, . . . .  Y~), X], 

where 

Tn(¥,,.. . ,  Yn) = {(y,,  . . . .  y~)~  I", × . . .  × Y~ [ some y~ = , }  

denotes the fat wedge. For f E [ ¥  ~, X], let f^ ~ [ Y  A . . .  A Y, X], and fr  E 
[T~(Y), X] denote the components off. 

COROLLARY 1.4. A map f :  I', × . . .  × Ya--" X is phantom i f  and only i f  

each component 

f^  : YI A " " " A Yd-"  X and f r  : Tn(Yl, . . . .  Yd)'-" X 

is phantom. 

PROOF. Consider the following diagram: 
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f 
, X Y~ X " " " X Yd 

1 
. . . .  Yd)v(Y  ^ " " " ^ Y d )  ' X " " X Y d )  , X 

If f is phantom, so is f~I;f by the lemma, hence so are the components 
o f f  since they factor through f~IEf. Conversely, if the componems o f f  are 
phantom so is 

[2~(fr vf~) -~ a E f  

by the lemma and hencefsince it is a retract of f~Zf. This completes the proof. 

PROOF OF PROPOSITION 1.2. We may assume that the Y~ are connected. By 
the corollary, the components of f a r e  phantom. But fr  is null, and 

f~  e [ Y , ^  . . .  ^ Yd, X].  

There are no non-trivial phantom maps in [Y ,^ . . .  ^ Y ~ , X ] ,  since 
]'i ^ • • • ^ Yd is d-connected, and ~,X is finite for • > d. This completes the 
proof of the proposition. 

Zabrodsky [Z, §2.6] asked when such a functor takes its values in nilpotent 
groups. 

LEMMA 1.5. For a finite H-space X,  the following are equivalent: 

(1) [ , X] is nilpotent group valued. 

(2) For n >> 0 the left normalized iterated commutator maps 

cn : X~ ~ X 

are nullhomotopic. 

PROOF. The implication (2)==*(1) is trivial, so suppose that [ , X] is 
nilpotent group valued. Let W be a countably infinite product of copies of X 
and suppose that [ W, X] is nilpotent of class < n. Then the left normalized 
commutator of the first n projections 

W ~ X n  c, ) X 

is null. But the map W ~ X  ~ is projection to a factor, 
commutator map cn : X ~ ~ X is null. 

so  the  i t erated  
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DEFINITION (Zabrodsky). A finite connected associative H-space X is 
h-nilpotent if equivalently: 

(1) [ , X] is nilpotent group valued. 
(2) For some n, the iterated left normalized commutator  map 

c~ : X~ ~ X 

is null. 

For the sake of optical harmony, let's refer to the component  c. ^ of  c. as ~.. 

The component  c.r is zero. 
Zabrodsky also defined the weaker notion of H-solvable and showed that the 

Lie groups SO(n), U(n), and Sp(n) are H-solvable. I can see no reason not to 
make the following conjecture: 

CONJECTURE. A connected, homotopy associative finite H-space is h-niL 

potent. 

The point of  this note is to describe a cohomological criteria for h- 
nilpotence and to verify the above conjectures in certain cases. 

It gives me great pleasure to thank Alex Zabrodsky for bringing this question 
to my attention and for his interest and encouragement in this work. 

§2. Cohomological criteria for H-nilpotence 

For each prime p let K(n) denote the nth  Morava K-theory at p [R]. Thus 

K(n) , (p t )~F , [v , , v ; l ] ,  Iv, I = 2 p " - 2 ,  

and the external cup product 

K ( n ) , X  ( ~  K ( n ) , Y - - , K ( n ) , ( X ×  Y) 
K(n), 

is an isomorphism. It follows that when X is a finite H-space, K(n),(X) is a 
finite dimensional Hopf-algebra over K(n ),  (pt). 

DEFINITION. A finite rank Hopf-algebra over a ring R is nilpotent if for 

n >> 0 the iterated left normalized commuta tor  map 

[ , ]×lA~n-2~ 
A ®" , A ®(n-O , . . .  , A  

is zero. 
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THEOREM 2.1. Let X be a finite connected associative H-space. Then X is 
h-nilpotent i f  and only if  any one of  the following conditions is satisfied: 

(1) MU*en = O for n >> O. 
(2) For each prime p, BP*dn = 0 for n ,> O. 
(3) K(n) ,X  is a nilpotent Hopfalgebra for all n, at all primes p. 

COROLLARY 2.2. I fH, (X;  Z) is torsion free, then X is h-nilpotent. 

The corollary applies, for example, when X = U(n) or Sp(n). 

PROOF. Note that HQ*cn = 0 for n ,>0 since X ^" is (n - 1)-connected. By 

assumption 
MU*(X^~)--, MU*(X^n)~Q 

is injective, so by the theorem it suffices to show that MU*c~ ~ Q = O. But for a 

finite complex Y, there is a natural isomorphism 

MU*(Y) ~ Q ,.~ MU*(pt) @ HQ*Y, 

so MU*C~ @Q = 0 as soon as HQ*c~ -- 0. This completes the proof. 

Theorem 2.1 is proved by reducing the problem to one in stable homotopy 

theory and applying the nilpotence theorem ([DHS]). 

§3. Reduction to stable homotopy theory 

Let X and Y be pointed finite complexes and f :  Y A X--" Y a map. Define 
maps 

~ : YAX ~)--- y 

inductively by 

~an -- ~n-l o ( f A  1), 

YAXAX~n_I) Z^~, YAX~n_l) ~_~, y. 

PROPOSmON 3.1. The maps ~ are null for n >> 0 if  and only if  the maps ~ 
are stably null for n ,> O. 

LEMMA 3.2. Suppose that ~ is stably null for some n. Then there is an 
integer M such that for all finite dimensional (M - 1)-connected Z, the maps 

97m^ lz:  Y A X ~ m ) ^ z ~ Y A Z  

are null for m ,> O. 
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PROOF. Since ~ is stably null, and Xand  Yare finite, there exists an M > 0 

with 
SM A Y A XIn)---~ SM A y 

null. Take this value of M. The lemma is now proved by induction on 

span(Z) = dim(Z) - connectivity(Z), 

the case span(Z)--1 having been done above. Let 7_,o c Z be any 
(M - 1)-connected subspace with the property that 

max{span(Zo), span(ZIZo)} < span(Z) 

(for example, take Zo to be the (dim(Z) - 1)-skeleton of Z). Consider the 

following enormous diagram: 

Z0^X~"~A Y ' Z0A Y 

ZAX~2n)A Y t^% ZAX~n)A y ' Z A Y  

l 1 ' 
/ /  

/ 
/ 

/ 
/ 

/ 

By the induction hypothesis, the top horizontal arrow is null for n >> 0 so the 
factorization through the dotted arrow exists. Also, lz/z0 A ~n is null for n >> 0 so 
the bottom left map is null for n >> O. It follows that the horizontal com- 
position, lz ^ ~2~, is null for n >> O. This completes the proof. 

PROOF OF PROPOSITION 3.1. Since a null map is stably null, one direction is 
obvious. Suppose that the maps ~, are stably null for n >> 0. Let M be as in 
Lemma 3.2, and take Z -- X ~m. By the lemma, the first map in the following 

factorization of ~U+m is null: 

X(M) A x(m)A y--,X~M)A y--,  y. 

This completes the proof. 

COROLLARY 3.3. Let X be a connected finite H-space. The maps cn are null 
for n ~, 0 i f  and only i f  the maps cn are stably nuU for n ,> O. 

Call a map f :  X--- Y of pointed spaces smash nilpotent if  
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f~n) : X~n)..~ y~M) 

is null for n >> 0. An argument similar to the proof of Proposition 3.1 proves: 

PROPOSITION 3.4. Let f :  X ~ Y be a map o f  finite spaces. Then f is smash 

nilpotent i f  and only f is stably smash nilpotent. 

~4. Cohomological criteria 

Now that the problem of nilpotence has been reduced to a problem in stable 
homotopy theory, the cohomologicaI criteria of Theorem 1 can be deduced 
from the nilpotence theorem ([DHS], [HS]). 

THEOREM 4.1 ([DHS], [HS]). 

(1) Let 
/._, f. 

. . .  , X .  ,X +l , . . .  

be a sequence o f  connected spectra, with X~ c~-connected, and with 

M U ,  f~ ffi 0 for all n. I f  

c, > an + b 

for some a, b, then lira Xn is contractible. 
(2) A map f :  X ~ Y o f  finite spectra is smash nilpotent i f  for all 0 < n < oo, 

and for all primes p, K ( n ) , f  ffi O. 

Let Ybe the Spanier-Whitehead dual of the suspension spectrum of X, and 
let ~ : Y ~  I ~ )  be the dual of  e~. Let T be the homotopy colimit o f  the 

sequence 

(S) y , 1:2) , . .  , y~,+2) , : l  I~n+3) • J ) * * * 

[.EMMA 4.2. For a ring spectrum E,  the following are equivalent: 
(1) There is an n with E,q~ A 1~., ffi O for all m.  

(2) Given m there is an n with E,q~n A 1~., = O. 

(3) E A T is contractible. 
(4) There is an n for which Y---. 1: n)--* E A yt~) is null. 
(5) There is an n for which E A Y ~  Y~)-'*E A Y~) is null. 

PROOF. The only non-trivial implications are (3)-*(4) and (4)-,(5). 
Assume (3). Since Y is finite, the nullhomotopy of 

Y--" E A T ffi E A lirq y~n) 
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occurs at some finite value ofn.  This is assertion (4). Given (4), the first map in 
the factorization 

E A Y  ' E A E A Y  (") u^l~ E ^ Y(n) 

of  E ^ Y ~ E A Y~") is null. This gives (5) and completes the proof of  Lemma 

4.2. 

PROOF OF THEOREM 2.1 (1). Take E -- M U  in Lemma 4.2. By assumption, 

part (2) is satisfied. By (1), the sequence 

y ~., y~) , y~2,-1) . . . .  , 

obtained by refining (S), satisfies condition (1) of  Theorem 4.1. It follows that 
T is contractible. Now take E -- S O and use the implication (3)=0 (5) of  Lemma 

4.2 to complete the proof. 

PROOF OF THEOREM 2.1(2). By assumption BP A Yis contractible for allp. 

It follows that M U  ^ T is contractible. Taking E -- M U  in Lemma 4.2 and 

using (3)=~ (2) reduces to part (1). 

PROOF OF THEOREM 2.1 (3). This part is similar to the proof of part (2) of  

Theorem 4.1 (see [HS]). We need some auxiliary spectra. For more infor- 

mation see [R] or [HS]. Let p be a fixed prime and let P(n)  be the quotient of  

the spectrum BP by the ideal I, = (p ,  v~ . . . .  , v,_ l). Thus 

there are natural maps 

and the limit 

P(O) = BP, 

P(n)*(pt)  m Fp [v,, v ,+l , . . . ] ,  

P(n)  ---, P(n + 1) 

lim P(n)  = H F p  
n ~ a o  

is the Eilenberg-MacLane'spectrum. The Bousfield classes (BP),  (K(m)),  and 

(P(n))  are related by 

(B) (BP)  = ( K ( O ) v . . .  v K(n - 1))v (P(n)) .  

By assumption, K ( m )  ^ T is contractible for all 0 < n < oo. Showing that 



246 M.J.  HOPKINS Isr. J. Math. 

BP A T is contractible will reduce to part (2). In view of  the Bousfield 
equivalence (B) it suffices to show that P(n) ^ T is contractible for n ~> 0. By 
assumption 

lim P(n) ^ T = HFp ^ T 

is contractible. Since Y is finite, it follows that 

Y---, T ~ P ( n )  ^ T 

is null for n >> 0. Taking E = P(n) in Lemma 3.2 and using the implication 
( 4 ) ~  (3) completes the proof. 
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